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LETTER TO THE EDITOR 

Conservative dynamics, phase ordering and stretched 
exponential decays 

Chuck Yeung and David Jasnow 
Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, PA 15260 

Abstract. We discuss the dynamics of an observable field related to a locally conserved 
field. We show that for a model of phase ordering dynamics and for a variation of model 
C critical dynamics, that the two-time momentum space correlation function decays 
asymptotically as  a stretched exponential. We show that under some conditions the 
asymptotic behaviour is experimentally observable and argue that the non-exponential 
behaviour is not a feature specific to these models but should rather apply for any observable 
coupled to a locally conserved field. 

It is often found that the asymptotic decay of temporal correlation functions are of 
the stretched exponential form [ 11. One way in which a stretched exponential decay 
arises is if  there is a broad distribution of relaxation times 7 such that the distribution 
vanishes sufficiently slowly as T- ,  CO. Such a distribution may result from dynamics on 
a hierarchical structure [2] or be due to a distribution of lengths as in polymers solutions 
[3]. In these cases the distribution of relaxation times is due to some specific property 
of each individual system. On the other hand, a broad distribution of relaxation times 
occurs naturally if the dynamics obey a local conservation law. In this letter we will 
demonstrate that the presence of a local conservation law can lead to a stretched 
exponential form a two-time correlation functions. 

The effect of conservation laws is of crucial importance in understanding the 
dynamics of any system. For example, it has recently been shown that, due to the 
distribution of relaxation times, conservative dynamics generically leads to an 
asymptotic power law decay for the two-point real-space correlation function [4]. In 
this letter we will consider the dynamics of an observable coupled to a locally conserved 
field. We study two models in which this situation is realized and show that the presence 
of the conserved field leads to a stretched exponential form for the asymptotic decay 
of the two-time momentum space correlation function. The first is a model of phase 
ordering dynamics introduced by Ohta et a1 [ 5 ] ,  and the second model can be considered 
to be a variation of model C critical dynamics as defined by Hohenberg and Halperin 
[ 6 ] .  We discuss the circumstances under which the asymptotic decay is experimentally 
observable and argue that the non-exponential decay is not a special feature of these 
models but, rather, is a general feature of an observable, nonlinearly coupled to a 
conserved field. 

We first consider the model of phase ordering dynamics without conservation of 
order parameter introduced by Ohta, Jasnow and Kawasaki (OJK) [ 5 ] .  The phase 
ordering process occurs after a rapid quench of a binary alloy or fluid into its miscibility 
gap. Initial attention was focused on the single time dynamical scaling behaviour [7]. 
More recently there has been increasing interest in two-time correlations. This interest 
arises firstly to obtain information about the instantaneous behaviour [8], secondly to 
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further differentiate dynamical universality classes [9,10], and thirdly to determine 
other universal features of phase ordering dynamics [ 113. These studies have typically 
been restricted to correlations in real space [ 121, to macroscopic densities such as the 
global magnetization [ 111 or to systems with vector order parameters [9]. On the other 
hand, the experimental measurements have been of the correlation function at a finite 
wavevector k for systems with single-component order parameters [ 131. There has also 
been simulations of the kinetic Ising model [14]. 

The presence of sharp interfaces makes the late stage phase separation process 
analytically difficult. Ohta et a1 circumvented this problem by introducing a spatially 
smooth auxiliary field u(r ,  t )  where r is the position and t is the time after the quench. 
The observable order parameter field $( r, t )  is related to U( r, t )  by a nonlinear mapping 
$( r ,  t )  = +heq Sign(u(r, t ) )  where +heq is the magnitude of the equilibrium value of $. 
The dynamics of the u-field is then obtained from the Cahn-Allen equations of motion 
[15] for the interfaces and by assuming that the u-field obeys the same equation of 
motion as that of its ensemble average. The OJK model is therefore a mean field 
approximation of the dynamics. With these assumptions it is found that the U field 
obeys a diffusion equation 

where D is a constant related to the surface tension. Note that although the observable 
$ field is not locally conserved by the dynamics (the time evolution does not obey 
the continuity equation), the U field is locally conserved. Therefore, in this example, 
the observable field is nonlinearly related to a locally conserved field. 

A nice feature of the OJK model is that if U is a Gaussian random variable at t = 0 
then U is a Gaussian random variable for all time t > 0. Therefore any expectation 
value can, in principle, be calculated. The scaling behaviour of the O J K  model was 
found to agree well with experimental and simulation data. The OJK model exhibits 
dynamical scaling wit) the $haracteristic domain size growing as t‘” [5]. The quasistatic 
scattering function ( $ k (  t ) $ - k (  t ) )  [5, 171 the two-point correlation function ( $ ( r , ,  t ) -  
(r2, t ) ) ,  and the two-time correlation function ( $ ( r ,  t , ) $ ( r ,  t J )  [16] were all found to 
be in excellent agreement with simulation results. To relate OJK to other models, note 
that the scaling behaviour of the OJK model is the same as that of the resummation 
method of Kawasaki, Yalabik and Gunton [ 181 and almost the same as that of a more 
sophisticated method of Mazenko [ 191. The introduction of a spatially smooth auxiliary 
field and the mean field approximation are also fundamental steps in these methods. 
The differences arises from the step at which the Gaussian assumption is made. 

For the OJK model the two-time, two-point order parameter correlation function 
is E161 

Here t,hi = $ ( r i ,  t i ) ,  ui = u ( r i ,  t i )  and (uIu2) is the Green function for the diffusion 
equation so that 

= (%)dl2 exp( Ir1 - 4 2 )  

r:+ 1: 1:+ 1: (3) 
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where we have set D = 1/4 for simplicity, and where Ii = ti’’’ is the time-dependent 
domain size and d is the spatial dimension. 

The k-space correlation function is now easily obtained from (2) and (3) 

S k ( f l ,  t 2 )  = d r  e-’”‘(+1+2) I 

where arcsin(a) has been expanded in powers of a. The sum is absolutely convergent. 
For sufficiently large I : =  f z ,  the higher order terms in the sum will always dominate 
the lower order terms. Therefore the asymptotic decay is slower than any exponential. 

For large argument kZ(I:+ 1:) the sum can be replaced by an integral 

We have assumed that the coefficients in the summation decreases as m-S for large 6. 
For the sum given by (4), 6 = 3/2+d/2. For large argument the integral can be 
approximated as the maximum in the integrand. The integrand is maximized at m = m* 
given by 

2m*+I=lk(  ( d- ;;y2 
Therefore, for large t 2 /  t l  the k space correlation function becomes 

For fixed t ,  the asymptotic decay is, to within logarithmic corrections, a stretched 
exponential e ~ p ( - ( t ~ / t , ) l ’ ~ )  for large t 2 / t , .  The form of the asymptotic decay is 
independent of 6. This indicates that the result is independent of the form of the 
nonlinear map IC, =f(u), except for rather general conditions. For example a poly- 
nominal mapping will lead to exponential decay and must be excluded. 

Although the asymptotic decay is non-exponential, this does not mean that it is 
experimentally observable. An experiment, whether real or numerical, can only hope 
to see four or five decades in the decay of the correlation function. If k21:< 1, the 
leading term in the sum (4) will dominate the first decades of the decay and the 
observed decay will seem exponential. However, if k21:> 1 ,  the contributions of the 
higher-order terms will be observable. 

To test our arguments we evaluated the sum in (4) numerically. The first 500 terms 
in the sum are taken. The error can be shown to be negligibly small for the times 
considered. Since this is not a steady state we calculate the normalized correlation 
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function ck(t,/tI) = Sk(tl ,  t z ) / ( S k ( t l ,  f l ) S k ( f Z ,  t2))l”. Figure 1 shows the normalized 
correlation function plotted on a semi-log scale against f 2 / f l  for d = 2 and kl ,  = 1/4 
(figure l (a ) )  and kl, = 1 (figure 1( b ) ) .  We have arbitrarily defined the first four decades 
in the decay as experimentally observable. For kl ,  = 1/4 the decay is approximately 
exponential in this range, but the decay is slower than exponential for kl,  = 1. Figure 
2 shows the same normalized correlation against ( t 2 / t , ) ’ / 2 .  For kl ,  = 1/4 (figure 2(a))  
the decay is faster than this stretched exponential form. For kl,  = 1 one sees that the 
decay is approximately of the form e ~ p ( ( t , / f , ) ” ~ ) .  To demonstrate that this decay is 
asymptotic we show the same correlation function over 30 decades in figure 2(c). The 
very slight curvature in the plot is assumed to be due to the logarithmic corrections. 

A comment should be made about comparing experimental data with the predictions 
of the O J K  model. The smaller time 1, in the correlation function must be within the 
scaling regime, i.e. the system must have well defined interfaces at 2,. This is because 
the OJK model is a description of the motion of the interfaces. In their study of spin 
glasses, Fisher and Huse [ 121 were interested in the correlation with the non-scaling 
initial state. This quantity cannot be calculated within the the O J K  model which assumes 
well established domains at all times. This picture was confirmed in simulations in 
which it was found that the agreement with O J K  improves as t ,  increased for fixed 

The k space intensity-intensity correlation function has been measured by Kim er 
a1 [ 131 for a binary fluid. However, one is more typically concerned with the two-time 
correlation functions in the steady state (or indeed in equilibrium). Therefore the 
correlation function for phase ordering dynamics is an unusual measurement. We note, 
however, that our primary result of a non-exponential decay of the correlation function 
is not limited to non-steady state dynamics. The non-exponential behaviour is due to 
the spectrum of relaxation times with the largest relaxation time being limited only by 
system size. The nonlinear relation between the observed $ field and the hidden 
conserved field then couples in many relaxation times and gives the non-exponential 
decay for the wavevector modes of $. These features can also be realized in the steady 
state or even in equilibrium. Although we have emphasized the local conservation as 

t 2 l f l  [W. 
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Figure 1. Semi-log plot of the normalized O J K  correlation function against tJt, in the 
‘experimentally observable’ regime. kl, = 1/4 in figure I (a)  and kl, = 1 in the figure l ( b ) .  
Within this range the decay for kl, = 1/4 appears approximately exponential, while for 
kl, = I there is a clear deviation from pure exponential decay. 
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Figure 2. Semi-log plot of the normalized OJK corre- 
lation function against ( t 2 / t , ) ” ’ .  k l ,  = 1/4 in figure 
I (a)  and kl ,  = 1 in figure I (b) .  Within this range the 

0 10 20 30 40 decay for kl ,  = 1 is approximately a stretched 
exponential. Figure l ( c )  is  the same as figure I ( b )  
except the plot is shown over 30 decades in the decay. (tI/hY 

a natural way to obtain the distribution of relaxation times, coupling to any field with 
these characteristics will result in a stretched exponential decay. For example in the 
Oono-Puri extension of the OJK model [17], the U field is not conserved. However 
this field has the same distribution of relaxation times as the original O J K  model and 
thus leads to the same asymptotic scaling behaviour. 

To illustrate the result for a steady state we consider a variation of ‘model C’ 
dynamics of Hohenberg and Halperin [ 6 ] .  In this model two fields are coupled as 

where tu and &* are Gaussian noise terms with correlation (&,(r, t )&(r ’ ,  t ’ ) ) =  
-2TV2S(  t - r ’ )S ( r  - r ’ ) .  For example, in the application to crystallization, U is identified 
as the temperature and + is the order parameter. The operating parameters are chosen 
so that U is in the one phase region but + is in the two phase region. The u-field is 
locally conserved by the dynamics while the observable +-field is not. 

The steady-state correlation function can be calculated in the limit r, = 0, E + O+ 
and l/D+O. In this limit the dynamics of U are independent of $ while the +-field 
is given by a nonlinear map of the conserved U field, i.e. +(r ,  t )  = f ( u ( r ,  t ) )  = 
sgn(u(r, t ) ) .  If one further assumes that the nonlinearities of the u-field can be 
neglected, so that the u-field is a Gaussian random variable, the steady state CC, 
correlation function then follows directly from our previous result for the OJK model, 
namely 

(10) (+b, M O ,  0)) = arcs in(~( r ,  0 )  
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where y ( r ,  t )  = (u ( r ,  t )u (O,  O) ) / (u ( r ,  t ) ’ ) )  and ( u ( r ,  r)u(O, 0)) is the steady-state correla- 
tion function of U. The argument for the OJK model remains valid and the asymptotic 
decay of the k mode correlation function is a stretched exponential with exponent 
1/2. The role of the initial correlation length I ,  in the O J K  model is replaced by the 
steady-state correlation length r, of the U field. By analogy with the O J K  model, for 
kr, > 1 the non-exponential behaviour can be observed while for kr, < 1 the experi- 
mentally observed decay will be approximately exponential. 

To test these arguments we have explicitly calculated the correlation function for 
(8) with g and E = O  on a one-dimensional lattice. The lattice is 512 sites long with 
r, = 16. Figure 3 shows a semi-log plot of the I,& correlation function against T = t2 - t ,  
for kr,=.rr /4  (figure 3 ( a ) ) ,  and kr,=.rr (figure 3 ( b ) ) .  As before the decay for the 
smaller, kr, is approximately exponential within this range while for kr, = .rr the decay 
is non-exponential. Figure 4 shows the same correlation functions plotted against T”’. 

The decay is approximately a stretched exponential for kr, = .rr. 
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Figure 3. Semi-log plot of the correlation function for ‘model C’ plotted against I = I* - I , .  
kr,, = n/4 in figure 3 ( a )  and kr, ,  = n in figure 3 ( b ) .  The decay appears approximately 
exponential for kr,, = n/4. 

The model we have considered here is somewhat unusual. In particular, the limits 
we have chosen are not the ones usually studied. However, this limit was chosen only 
for calculational simplicity; the fact that the asymptotic decay of the wavevector mode 
is non-exponential should be robust to changes in the model. Let us consider adding 
nonlinearities to dynamics of U in (8). In this case the u-field is no longer a Gaussian 
random variable so that the specific details of our calculation no longer holds. However 
there remains a spectrum of relaxation times due to the conservative dynamics. The 
longest relaxation time is only limited by the system size and nonlinear coupling of 
the observable +-field should still give a non-exponential decay in the correlation 
function. The non-exponential nature of the asymptotic decay should also not depend 
greatly on the way the +-field is coupled to the u-field. For example, allowing D to 
be finite or letting r, be non-zero couples the dynamics of the U field to the observable 
I) field. However, as noted in our analysis of the O J K  model, the asymptotic non- 
exponential form of the decay is independent of the exact form of the mapping of the 
observable field to the underlying conserved field. Furthermore, the addition of coupling 
between the fields will likely result in a non-polynomial relation between the two fields. 
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Figure 4. Semi-log plot of the correlation function 
against I ” ~ .  kr,, = 77/4 in figure 4 ( a  1 and kr,, = n- in 

0 20 40 a stretched exponential. To show that this decay is 
asymptotic we show the correlation function for 
kr,, = n- over 15 decays in the decay in figure 4(c) .  

I , , *  figure 4(b) .  The decay for kr,, = T is approximately 

t’/P 

However, the stretch exponential exponent p of the stretch exponential, i.e. c (  t )  - 
exp(-tP) and especially, the observability of the non-exponential decay, may be 
affected. 

To summarize, we have demonstrated that the asymptotic decay of the wavevector 
correlation function of two specific models is a stretched exponential with exponent 
1/2. In both models the observable field is nonlinearly coupled to an underlying 
dynamically conserved field. The conservative dynamics naturally generate a spectrum 
of relaxation times, and the nonlinear relation between the fields results in a stretched 
exponential form for the asymptotic decay of the two-time correlation function in 
momentum space. We have demonstrated that for some circumstances the non- 
exponential behaviour is experimentally observable. Finally, we have argued that the 
non-exponential decay is not specific to these models but is a general feature of an 
observable nonlinearly related to a dynamically conserved field. 

We would like to thank T R Rogers and W I Goldburg for helpful discussions. This 
work was supported by the National Science Foundation through the Division of 
Materials Research Grant nos. DMR86-13030 and DMR89-14621. 
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